Subdomains of the Octopine Synthase Upstream Activating Element Direa Cell-Specific Expression Transgenic Tobacco Plants
نویسنده
چکیده
Previous work has shown that the octopine synthase (ocs) gene encoded by the Agrobacterium tumefaciens Ti-plasmid contains an upstream activating sequence necessary for its expression in plant cells. This sequence is composed of an essential16-bp palindrome and flanking sequences that modulate the level of expression of the ocs promoter in transgenic tobacco calli. In this study, we have used RNA gel blot analysis of RNA extracted from transgenic tobacco plants to show that the octopine synthase gene is not constitutively expressed in all plant tissues and organs. This tissuespecific pattern of expression is delermined, to a large extent, by the 16-bp palindrome. Histochemical analysis, using an ocs-lacZ fusion gene, has indicaled that the 16-bp palindrome directs the expression of the ocs promoter in specific cell types in the leaves, stems, and roots of transgenic tobacco plants. This expression is especially strong in the vascular tissue of the leaves, leaf mesophyll cells, leaf and stem guard cells, and the meristematic regions of the shoots and roots. Sequences surrounding the palindrome in the upstream activating sequence restrict the expression of the ocs promoter to fewer cell types, resulting in a reduced level of expression of P-galactosidase activity in the central vascular tissue of leaves, certain types of leaf trichomes, and the leaf primordia.
منابع مشابه
Subdomains of the octopine synthase upstream activating element direct cell-specific expression in transgenic tobacco plants.
Previous work has shown that the octopine synthase (ocs) gene encoded by the Agrobacterium tumefaciens Ti-plasmid contains an upstream activating sequence necessary for its expression in plant cells. This sequence is composed of an essential 16-bp palindrome and flanking sequences that modulate the level of expression of the ocs promoter in transgenic tobacco calli. In this study, we have used ...
متن کاملAn octopine synthase enhancer element directs tissue-specific expression and binds ASF-1, a factor from tobacco nuclear extracts.
We have investigated the expression pattern conferred by a cis-regulatory element (-212 to -154) from the upstream region of the octopine synthase (ocs) gene in transgenic tobacco plants. Analysis of beta-glucuronidase expression driven by the ocs regulatory element revealed a pattern that is tissue-specific and developmentally regulated. In young seedlings, expression is confined primarily to ...
متن کاملMultiple domains exist within the upstream activator sequence of the octopine synthase gene.
It is known that a 16-base pair palindrome (ACGTAAGCGCTTACGT) located upstream of the ocs gene can activate a maize adh1 promoter in a transient expression system [Ellis et al. (1987). EMBO J. 6, 11-16; Ellis et al. (1987). EMBO J. 6, 3203-3208]. We have determined that this palindrome is also essential for ocs promoter activity in tobacco calli. In addition, sequences immediately adjacent to t...
متن کاملExpression and antimicrobial activity analysis of dermaseptin B1 recombinant peptides in tobacco transgenic plants
Recently, new molecular breeding and genetic engineering approaches have emerged to overcome the limitations of conventional breeding methods in generating disease-resistance transgenic plants. The use of antimicrobial peptides (AMPs) to produce transgenic plants resistant to a wide range of plant pathogens has achieved great success. Among huge number of AMPs, Dermaseptin B1 (DrsB1), an antimi...
متن کاملNovel plant transformation vectors containing the superpromoter.
We developed novel plasmids and T-DNA binary vectors that incorporate a modified and more useful form of the superpromoter. The superpromoter consists of a trimer of the octopine synthase transcriptional activating element affixed to the mannopine synthase2' (mas2') transcriptional activating element plus minimal promoter. We tested a superpromoter-beta-glucuronidaseA fusion gene in stably tran...
متن کامل